Replace the Column Contains the Values 'yes' and 'no' with True and False in Pandas| PythonValues of the Data Frame are supplanted with different qualities progressively. This varies from updating with. loc or. iloc, which expect you to determine an area to refresh with some worth. to_replace: str, regex, list, dict, Series, int, float, or None The most effective method to find the qualities that will be supplanted. numeric, str or regex: 
 List of str, regex, or numeric: 
 dict: 
 None: 
 Value: 
 inplace: Boolean, default Bogus 
 limit: int, default None 
 regex: bool or same sorts as to_replace, default Bogus 
 technique: {'pad', 'ffill', 'bfill', None} 
 Returns: 
 Raises: 
 Value Error: 
 Sample Data Frame:Std data = {'name of the student': ['Ajay', 'Sai', 'Chikky', 'Pavani', 'Pojitha', 'Michael', 'Sri', 'Devi', 'David', 'Gopal'], 'Scores of the Student': [11.5, 7, 20.5, np.nan, 6, 21, 22.5, np.nan, 10, 30], 'Number of attempts': [10, 9, 5, 6, 7, 2, 8, 3, 2, 1], 'Pass': ['yes', 'no', 'yes', 'no', 'no', 'yes', 'yes', 'no', 'no', 'yes']} labels = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j'] Values for each column will be: name: 'Anil', score: 18.5, Number of attempts: 1, Pass: 'yes', label: 'k' Example: Output: The Original rows of the student data is:
     Number of attempts	name of the student		Pass		Scores
a         	10 			Ajay	    		yes   		11.5                                  
b         9       			Sai	      		no		    7.0                                  
c         5 			Chikky     		yes   		20.5                                  
d         6      			Pavani      		no    		NaN                                  
e         7      			Pojitha      		no    		6.0                                  
f          2   			Michael     		yes   		21.0                                  
g         8    			Sri	     		yes   		22.5                                  
h         3      			Devi      		no    		NaN                                  
i          2      			David      		no    		10.0                                  
j          1      			Gopal     		yes   		30.0                                  
                                                                       
Here, we are replacing the 'Pass' column contains the values 'yes' and 'no' with True and False:                                                        
   Number of attempts	name of the student		Pass		Scores
a         	10 			Ajay	    		True   		11.5                                  
b          9       			Sai	      		False		    7.0                                  
c          5 			Chikky     		True   		20.5                                  
d          6     			Pavani      		False    	NaN                                  
e         7      			Pojitha      		False    	6.0                                  
f         2    			Michael     		True   		21.0                                  
g         8    			Sri	     		True   		22.5                                  
h         3      			Devi      		False    	NaN                                  
i          2      			David      		False    	10.0                                  
j          1      			Gopal     		True   		30.0               
Using DataFrame.replace() MethodThis strategy is utilized to supplant a string, regex, list, word reference, series, number, and so forth from an information outline. Syntax: Example: Output: The Original rows of the student data is:
     Number of attempts	name of the student		Pass		Scores
a         	10 			Ajay	    		yes   		11.5                                  
b         9       			Sai	      		no		    7.0                                  
c         5 			Chikky     		yes   		20.5                                  
d         6      			Pavani      		no    		NaN                                  
e         7      			Pojitha      		no    		6.0                                  
f          2   			Michael     		yes   		21.0                                  
g         8    			Sri	     		yes   		22.5                                  
h         3      			Devi      		no    		NaN                                  
i          2      			David      		no    		10.0                                  
j          1      			Gopal     		yes   		30.0                                  
                                                                       
Here, we are replacing the 'Pass' column contains the values 'yes' and 'no' with True and False:                                                        
   Number of attempts	name of the student		Pass		Scores
a         	10 			Ajay	    		True   		11.5                                  
b          9       			Sai	      		False		    7.0                                  
c          5 			Chikky     		True   		20.5                                  
d          6     			Pavani      		False    	NaN                                  
e         7      			Pojitha      		False    	6.0                                  
f         2    			Michael     		True   		21.0                                  
g         8    			Sri	     		True   		22.5                                  
h         3      			Devi      		False    	NaN                                  
i          2      			David      		False    	10.0                                  
j          1      			Gopal     		True   		30.0                
Next TopicScrapy Module in Python  | 

We provides tutorials and interview questions of all technology like java tutorial, android, java frameworks
G-13, 2nd Floor, Sec-3, Noida, UP, 201301, India










